การคำนวณขนาดตัวอย่างกรณีการศึกษาแบบ Case-Control

1. กรณีไม่มีการปรับค่า (correction factor)

 \[n_1 = \frac{Z_{1-\alpha/2}\sqrt{(r+1)pq} + Z_{1-\beta}\sqrt{pq_1 + pq_2}}{r(p_1 - p_2)^2}; \quad n_2 = rn_1 \]

2. กรณีมีการปรับค่า (correction factor)

 \[n_1 = \frac{n_1}{4} \left[1 + \frac{1}{n_1r[p_1 - p_2]} \right]; \quad n_2 = rn_1 \]

เมื่อ \(r = \) อัตราส่วนระหว่างกลุ่มควบคุม (control) กับกลุ่มศึกษา (case) ที่จะศึกษา

\(p_1 = \) อัตราส่วนกลุ่มศึกษา (case) เมื่อสัมผัสปัจจัย \(q_1 = (1 - p_1) \)

\(p_2 = \) อัตราส่วนกลุ่มควบคุม (control) เมื่อสัมผัสปัจจัย \(q_2 = (1 - p_2) \)

\(\bar{p} = \frac{p_1 + p_2}{r + 1}; \quad \bar{q} = 1 - \bar{p} \)

การคำนวณ \(p_1 = \) เมื่อทราบค่า \(p_2 \) และ Odd Ratio (OR)

\[p_1 = \frac{(OR)p_2}{(OR)p_2 + (1 - p_2)} \]

การคำนวณขนาดตัวอย่างโดย Kelsey et al. (1996)

\[n_1 = \frac{(Z_{1-\alpha/2} + Z_{1-\beta})^2 \bar{p}(1 - \bar{p})}{r(p_1 - p_2)^2}; \quad n_2 = rn_1 \]

การคำนวณขนาดตัวอย่างโดย Lameshow et al. (1990)

\[n = \frac{Z_{1-\alpha/2}\sqrt{[2p_2(1 - p_2) + Z_{1-\beta}(p_1(1-p_1) + p_2(1-p_2))]}^2}{(p_1 - p_2) \bar{p} \bar{q}} \]

\(p_1 = \) ความน่าจะเป็นในการสัมผัสปัจจัยในกลุ่มเป็นโรค

\(p_2 = \) ความน่าจะเป็นในการสัมผัสปัจจัยในกลุ่มไม่เป็นโรค

\[p_1 = \frac{(OR)p_2}{(OR)p_2 + (1 - p_2)} \]

\[p_2 = \frac{c}{c + d} \]

การคำนวณขนาดตัวอย่างโดย Lameshow et al. (1990) ได้แนะนำว่ากรณีไม่แน่ใจว่าการสัมผัสปัจจัยในกลุ่มควบคุมเป็นเท่าใด ให้แทนค่า \(2p_2(1 - p_2) \) ด้วย \(2\bar{p}(1 - \bar{p}) \) ขนาดตัวอย่างจะเท่ากับการคำนวณขนาดตัวอย่างโดย Schlesselman (1974, 1982), Fleiss (1981) และ Fleiss, Levin & Pail (2003)
ตัวอย่าง นักวิจัยต้องการศึกษาการได้รับวัคซีนในการป้องกันโรควัณโรค การศึกษาทั่วไปในกลุ่มที่ป่วยด้วยวัณโรคและกลุ่มที่ไม่ป่วยด้วยวัณโรค จากข้อมูลพบว่า 30% ของกลุ่มไม่ป่วยด้วยวัณโรคไม่ได้รับวัคซีน ค่า Odds ratio ในการศึกษาครั้งก่อนเท่ากับ 3 กำหนดระดับนัยสำคัญทางสถิติที่ 5% อ่านในการทดลองเท่ากับ 80% จะใช้ขนาดตัวอย่างเท่าไร

\[
\begin{align*}
 n_1 &= \frac{Z_{1-\alpha/2} \sqrt{\frac{1}{p_1} + \frac{1}{q_1}} + Z_{1-\beta} \sqrt{r(p_1 + p_2)q_1 + p_2q_2}}{r(p_1 - p_2)^2}; \quad n_2 = n_1 \\
p &= \frac{(OR)p_2}{(OR)p_2 + (1 - p_2)} = \frac{(3)(0.3)}{(3)(0.3) + (1 - 0.3)} = 0.46154 \\
\bar{p} &= \frac{p_1 + p_2}{r + 1} = \frac{0.4615 + (1)(0.4615)}{1 + 1} = 0.38077 \\
n_1 &= \frac{Z_{1-\alpha/2} \sqrt{\frac{1}{p_1} + \frac{1}{q_1}} + Z_{1-\beta} \sqrt{r(p_1 + p_2)q_1 + p_2q_2}}{r(p_1 - p_2)^2} \\
 &= \frac{1.96 \sqrt{(1 + 1)(0.38077)(1 - 0.38077) + 0.842(1)(0.46154)(1 - 0.46154)}}{(1)(0.46154 - 0.3)^2} \\
 &= 141.69704 \\
n_2 &= n_1 = (1)(141.69704) = 141.96704
\end{align*}
\]

ในการศึกษาครั้งต่อไปใช้ขนาดตัวอย่างรวม 282 ราย หรือกลุ่มละ (1:1) 141 ราย

การวิเคราะห์ด้วยโปรแกรม Stata

ใช้คำสั่ง sampsi_ucc (นิคม อนอมเสียง, 2554) ดังนี้

1. คำนวณขนาดตัวอย่างเมื่อ \(p_2 = \) สัดส่วนกลุ่มควบคุม (control) เมื่อสัมผัสปัจจัย เท่ากับ 0.3 Odds Ratio เท่ากับ 2 อ่านจากตารางเท่ากับ 80% และสัมประสิทธิ์ความเชื่อมั่นเท่ากับ 95%

```
 sampsi_ucc .3, or(2) sample size Kelsey Fleiss Fleiss with CC Lemeshow et al.
 case 142 141 155 130
 control 142 141 155 130
 total 284 282 310 260
 alpha = .05 power = .8 tailed : (two)
```

2. คำนวณขนาดตัวอย่างเมื่อ \(p_2 = \) สัดส่วนกลุ่มควบคุม (control) เมื่อสัมผัสปัจจัย เท่ากับ 0.3 Odds Ratio เท่ากับ 2 อ่านจากตารางเท่ากับ 90% และสัมประสิทธิ์ความเชื่อมั่นเท่ากับ 95%

```
 sampsi_ucc .3, or(2) power(.90) sample size Kelsey Fleiss Fleiss with CC Lemeshow et al.
 case 190 188 202 176
 control 190 188 202 176
 total 380 376 404 352
 alpha = .05 power = .9 tailed : (two)
```
การคำนวณขนาดตัวอย่างกรณีการศึกษาแบบ Matched Case-Control

\[n_1 = \frac{(Z_{1-\alpha/2} \psi \sqrt{2} + Z_{\beta} \sqrt{2})^2}{(e_\psi - e_\nu)^2} \]

\[e_\psi = \text{ความแปรปรวนของ Odds Ratio = } \psi \text{ ใดๆ เท่ากับ} \]

\[e_\nu = \sum_{m=1}^{\nu} \frac{mt_\psi (M - m + 1)}{(m \psi + M - m + 1)^2} \]

\[e_\nu = \text{ความแปรปรวนของ Odds Ratio = 1 เท่ากับ} \]

\[e_\psi = \sum_{m=1}^{\psi} \frac{mt_\psi (M - m + 1)}{(m \psi + M - m + 1)^2} \]

\[e_\psi = \text{ตัวแปรแบบมีเงื่อนไข เมื่อ Odds Ratio = } \psi \text{ ใดๆ เท่ากับ} \]

\[e_\psi = \sum_{m=1}^{\psi} \frac{mt_\psi (M - m + 1)}{(m \psi + M - m + 1)^2} \]

\[\psi = \text{ค่า Odds Ratio} \]

\[M, m = \text{จำนวน Matched control, case} \]

\[t_m = \text{ความน่าจะเป็นการสัมพันธ์ปัจจัยในกลุ่มศึกษา (case) และกลุ่มควบคุมแบบจับคู่ (matched control) M ราย เท่ากับ} \]

\[t_m = p_1 \left(\frac{M}{m - 1} \right) p_{m-1} q_0 q_{m-1} + q_1 \left(\frac{M}{m} \right) p_0 q_{m-1} \]

ตัวอย่าง การศึกษาแบบ Matched Case-Control การกินยาเม็ดคุมกำเนิดกับการโรคร้าวใจในเด็ก (Congenital heart disease) จากการศึกษาที่พบว่าสัดส่วนการใช้ยาเม็ดคุมกำเนิดในกลุ่มควบคุม (control) เท่ากับ 0.30 และ Odds ratio เท่ากับ 2.2 พิจารณาขนาดตัวอย่างเมื่อกำหนดระดับนัยสำคัญ \(\alpha = 0.05 \) และ \(\beta = 0.10 \) (Case: Matched Control = 1:1)

การวิเคราะห์ตัวอย่างโปรแกรม Stata

ใช้คำสั่ง sampsi_mcc (Mander, 2005) ใช้คำสั่ง findit sampsi_mcc แล้วทำการ install คำสั่งดังกล่าว

คำนวณขนาดตัวอย่างจากตัวอย่าง เมื่อ \(p_2 = \) สัดส่วนกลุ่มควบคุม (control) เมื่อสัมพันธ์ปัจจัย เท่ากับ 0.3 Odds Ratio เท่ากับ 2 อ่านจากการทดสอบเท่ากับ 90% และสัมประสิทธิ์ความเชื่อมั่นเท่ากับ 95% case: matched control = 1:1
Estimate Sample Size for Matched Case Control Study
Test Ho: Odds ratio=1 Ha: Odds ratio = alt. OR

Assumptions:
\[
\begin{align*}
\text{Alpha} &= 0.0500 \\
\text{(number of controls)}M &= 1.0000 \\
\text{Prob. Exp. Controls} &= 0.3000 \\
\text{Alt OR} &= 2.0000 \\
\text{Power} &= 0.9000
\end{align*}
\]
Estimated Number of Cases:
\[N = 230\]

เอกสารอ้างอิง
นิคม ถนอมเสียง (2554). การคำนวณขนาดตัวอย่างกรณีการศึกษาแบบ Unmatched Case-Control. (sampsi_ucc.ado) Stata ADO file.