Long Term Evolution (LTE) Quality of Service (QoS) Multimedia

The Third Generation Partnership Project (3GPP) recommends a framework for optimizing and deploying Fourth Generation Services (4G) networks. The Reference Model is the next generation of mobile network architecture, which enables the convergence of multiple access technologies such as Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), and others into a single network. This model provides a foundation for the development of new multimedia services, where Quality of Service (QoS) is a critical factor. Voice and data services must coexist in a single network, with the multimedia services requiring specific QoS parameters. The Reference Model is designed to support these needs while ensuring the QoS requirements for multimedia services are met.
Quality of Service (QoS) is an important aspect of the Internet. It is essential for providing high-quality services such as VoIP, video streaming, and online gaming. QoS ensures that packets are delivered to their destination in a timely manner, with minimal loss and delay.

Queueing Delay refers to the time that packets wait in a queue before being processed by a network element. This delay can be caused by congestion or limited processing power.

Processing Delay refers to the time it takes for a network element to process a packet. This can include tasks such as routing, packet filtering, and data compression.

Bandwidth refers to the amount of data that can be transmitted over a network link in a given time. It is measured in bits per second (bps) or megabits per second (Mbps).

DiffServ or Differentiated Services is a method of providing quality of service by classifying and prioritizing different types of network traffic.

VoIP (Voice Over Internet Protocol) is a technology that allows voice communication over the Internet. It is used in applications such as VoIP telephony and video conferencing.

LTE (Long-Term Evolution) is a wireless technology standard for mobile communication. It is designed to provide high-speed mobile broadband access.

Conclusion

The importance of QoS cannot be overstated in modern communications systems. Proper QoS management is crucial for ensuring reliable and efficient network performance.
A. Performance of VoIP with Mobility in UTRA Long Term Evolution

The study on the performance of Voice-over-IP (VoIP) in UTRA Long Term Evolution (LTE) shows that with mobility, the VoIP system can maintain acceptable quality. The key factors affecting the performance of VoIP in LTE include:

1. **Packet Loss Rate (PLR):** Lower PLR results in better voice quality.
2. **Channel Quality Indicator (CQI):** Higher CQI indicates a better channel condition.
3. **Symbol Error Rate (SER):** Lower SER ensures more accurate data transmission.
4. **Transport Block Size (TBS):** Larger TBS improves the efficiency of data transmission.

For the VoIP capacity in different 3GPP cases, the study shows that:

- **Common Parameters** include:
 - **UE velocity:** 3 km/h
 - **UE receiver type:** MRC 1x2
 - **Channel model:** TU 20
 - **Simulation length:** 1M steps = 72 seconds
 - **Symbols per subframe:** 14 (with 4 control symbols)

- **Subframe length (TTI):** 1 ms
- **Carriers per PRB:** 12
- **Duplexing:** FDD
- **Power control:** Off
- **ARQ:** Off
- **CQI measurement interval:** 5 ms
- **CQI reporting delay:** 2 ms
- **CQI reporting resolution:** 2 PRBs
- **CQI error variance:** 1 dB
- **Initial MCS (LA off):** QPSK 2/3
- **Possible MCSs (LA on):** QPSK 1/3, 1/4, 1/2; 16QAM 1/2, 3/4; 64QAM 1/2, 3/4, 7/8
- **LA:** Outer Loop LA
- **RLC target:** 0.2
- **TD packet scheduler:** Round Robin
- **FD packet scheduler:** Even Resources
- **Segmentation:** Off
- **Handover margin:** 3 dB
- **Handover sliding window size:** 200 ms

Figure 1: VoIP capacity in different 3GPP cases
ผล VoIP วิธีการการจัดจ่ายแบบไม่เท่ากัน ระบบการเชื่อมต่อลำดับและพิเศษ
ของการเปิดตัวสำหรับมือถือภายใน (ROHC) และ handovers ผลลัพธ์ที่เกิดขึ้นจาก
ผลการทดสอบของ ROHC ไม่ใช่เหมาะสมกับการผลิตระบบ VoIP เป็น
เนื้อที่สุด โดยожетย้องออกเมื่อเปรียบเทียบกับการผลิตไลน์และ
พิเศษการผลิตระบบ

<table>
<thead>
<tr>
<th>Case</th>
<th>Frequency (GHz)</th>
<th>ISD (m)</th>
<th>BW (MHz)</th>
<th>PLoss (dB)</th>
<th>Speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>500</td>
<td>5.0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>500</td>
<td>5.0</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>500</td>
<td>5.0</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

ตารางที่ 3 Simulation Case definitions

จากเทคนิคการจัดจ่ายในส่วนของ header (robust header compression (ROHC) ในเครื่องจ่าย LTE ในการต่อที่มีการเคลื่อนที่สูง
(เร็ว) ส่งเสริมไปในระบบ VoIP การสูญเสีย (capacity loss) จากสถานการณ์
การเคลื่อนที่เร็ว (120 km/h) ของแบตเตอรี่ 65% เมื่อเทียบกับการ
เคลื่อนที่กิโลเมตร (3 km/h) ผู้ใช้บริการยังมีความสามารถในการสูญเสีย
โดยรวมของการไม่ใช้ ROHC เมื่อเปรียบเทียบกับการใช้ ROHC เป็น 17%

ภาพที่ 7 Relative DL VoIP Capacity with and without Roch

B. MultiMedia Mobility Manager – a Seamless Mobility Management
Architecture Supporting Multimedia Applications

ในเอกสารนี้ การพัฒนาของ concept และสถาปัตยกรรมของ
ซอฟต์แวร์ M4 (Multimedia Mobility Manager), ถูกนำเสนอในส่วน M4N
โดยชื่อรายละเอียดที่จัดการโปรแกรมประยุกต์ผลิตภัณฑ์ โดยใช้เครื่องช่วย
การจัดอันดับวิเคราะห์ที่最适合 แสดงให้เห็น M4 สร้างแบบ multihomed IP
เครื่องช่วยในการจัดลำดับการ沧州 handovers ผู้ให้สื่อสารที่ส่งรอง
ใน M4 โดยมีเครื่องจ่ายขึ้นที่รวบรวมผู้ค้าน้ำลายและ jitter ในค่าเวลาที่

ภาพที่ 8 Overall architecture

ภาพที่ 9 Results from hand-over performance studies

การประมวลผลผลของสร้างสถาปัตยกรรมของสูตรการต่อพื้นที่
ศึกษา ได้แก่ Throughput, delay, delay, jitter, packet loss, และการประเมิน
การจัดเรียงไม่ได้ของ packet ที่ศึกษา โดยสูงจาก output จากภาพที่ 9 เป็นกราฟ จาก
หนึ่งจากกราฟแสดงที่แสดง (ในส่วนที่ด้าน) jitter ที่มีผลกระทบที่สูง
เครื่องจ่ายในเวลาหนึ่ง หรือ packet loss rate (แสดงในส่วนที่ด้าน) การ
กำหนดค่าสำหรับการจัดเรียงโดยใช้จุดที่แสดงในส่วนที่ด้านกับสีสะท้อน
ขึ้นได้ที่ข้อมูลที่มีการเปลี่ยน ในระยะเวลา (แสดงในส่วนที่ด้านและสีสันที่แสดง)

วิธีที่ต้องใช้ ซึ่งมีการสูญเสีย packet 0-3 packet จากการทดสอบในการศึกษา
กรอบเวลา ในการทดสอบแสดงในภาพที่ไม่มีการสูญเสีย packet RTTs ปิด
เป็น 10 milliseconds ของ WLAN หรือ 150 milliseconds สำหรับ CDMA
2000, the RTT jitter is 10 milliseconds. رفع التأخير إلى 20 milliseconds สำหรับ CDMA 2000 คาดจะแตกต่างกันมากและต่างกันที่จะใช้ในการสื่อสารFormatter AFS สำหรับ WLAN โดยรวมที่สูงค่าที่ได้รับพื้นฐานที่เป็นไปได้ที่ผ่านต่ำ ประมาณ 3.0 ซึ่งการรีเซ็ตค่าสู่ที่พื้นฐาน CDMA2000 ล็อคสูติ 6.0

C. Performance evaluation of DQOAS algorithm in case of applications generating VoIP and video streaming when a new QoS prioritization scheme for LTE is used

In a packet-switched wireless network, the flow of voice and video traffic that is generated by the application prioritization mechanism. For example, the WiMAX and LTE network architectures differ in their QoS mapping between different classes of service. In this case, DQOAS algorithm is used to prioritize voice and video traffic when the QoS mapping is not explicitly defined by the network provider.

Adaptation Scheme: DQOAS (Dynamic Quality Oriented Adaptation Scheme: DQOAS) is a method for prioritizing applications in a heterogeneous network. In this case, DQOAS algorithm is used to prioritize voice and video traffic when the QoS mapping is not explicitly defined by the network provider.

In LTE, the Quality of Experience (QoE) is defined by the QoS parameters such as latency and throughput. In a packet-switched wireless network like WiMAX and LTE, DQOAS algorithm is used to prioritize voice and video traffic when the QoS mapping is not explicitly defined by the network provider.
Schedulers (channel conditions, resource allocation policies, available resources, delay sensitive/insensitive traffic, etc) choose which traffic will be prioritized and how priorities are enforced. Downlink traffic is prioritized over uplink traffic, except for delay-sensitive flows, which prioritize eNodeB scheduling, queue-aware schedulers, and channel-aware schedulers. In LTE downlink, QoS is prioritized over channel quality metrics.

DQOAS is a QoS adaptation algorithm designed to handle various traffic types, including file downloads, video streaming, and real-time communication. It adapts to varying network conditions, ensuring optimal QoS for all types of traffic. The algorithm involves estimating the QoS expectation levels for every user and adjusting the parameters accordingly. For file downloads, the algorithm can be described by the following equation:

\[
\frac{f_1 + \frac{\varepsilon}{\beta} f_2}{T + d_{\text{max}}} \cdot \frac{N}{n} \cdot \Delta \leq \frac{1}{1 - \varepsilon},
\]

where \(f_1\) and \(f_2\) are the file sizes, \(T\) is the total throughput, \(d_{\text{max}}\) is the maximum delay, \(N\) is the number of users, \(n\) is the number of cells, \(\Delta\) is the duration of the data transmission, and \(\varepsilon\) is the QoS expectation.
\(f_1 \) and \(f_2 \) are the eligibility scores for the packet in the queue. \(s \) is the maximum accepted ratio of delayed packets. To satisfy the QoS requirements, the maximum accepted ratio of delayed packets for any user \(i \) is \(\epsilon_i \) and the maximum accepted ratio of delayed packets is \(\epsilon \) and the maximum expected delay is \(\Delta \). The maximum delay expected for any user \(i \) is \(\Delta_i = \frac{N_i}{\sum_i N_i} \Delta \) and \(\epsilon_i = \frac{1}{1 - \epsilon} (M_i^{\text{max}} - M_i) \), where \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 12 Changing QoS Class for low priority e-learning traffic flow

Safeguarding and QoS usage, the maximum accepted ratio of delayed and lost packets \(\epsilon \) is determined according to the burst size, latency, and delay requirements of the application. The maximum allowed delay for a packet \(\Delta \) is the maximum delay a packet is allowed to have before being discarded. The maximum allowed delay for any user \(i \) is \(\epsilon_i \). For a packet to be accepted, it must be delayed for a certain amount of time. The maximum delay \(M_i^{\text{max}} \) for any user \(i \) is calculated as \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 13 Semi-persistent and dynamic scheduling

The procedure for determining the QoS class of a packet is based on the packet's delay, priority, and resource requirements. The maximum delay \(M_i^{\text{max}} \) for any user \(i \) is calculated as \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 13 Semi-persistent and dynamic scheduling

The maximum delay \(M_i^{\text{max}} \) for any user \(i \) is calculated as \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 12 Changing QoS Class for low priority e-learning traffic flow

\(f_1 \) and \(f_2 \) are the eligibility scores for the packet in the queue. \(s \) is the maximum accepted ratio of delayed packets. To satisfy the QoS requirements, the maximum accepted ratio of delayed packets for any user \(i \) is \(\epsilon_i \) and the maximum accepted ratio of delayed packets is \(\epsilon \) and the maximum expected delay is \(\Delta \). The maximum delay expected for any user \(i \) is \(\Delta_i = \frac{N_i}{\sum_i N_i} \Delta \) and \(\epsilon_i = \frac{1}{1 - \epsilon} (M_i^{\text{max}} - M_i) \), where \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 12 Changing QoS Class for low priority e-learning traffic flow

The maximum delay \(M_i^{\text{max}} \) for any user \(i \) is calculated as \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).

Figure 12 Changing QoS Class for low priority e-learning traffic flow

The maximum delay \(M_i^{\text{max}} \) for any user \(i \) is calculated as \(M_i^{\text{max}} = \frac{1}{\beta} \sum_i (f_1 + \alpha f_2) T_i \cdot \frac{\sum_i N_i}{T + d_m \max} \cdot \beta \geq \delta \).
Mapping scheme, in video and web browsing data streams is a performance indicator that is used to determine the quality of the video and web browsing streams. The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is used to determine the quality of the video and web browsing streams. The mapping scheme is calculated as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]

The mapping scheme is defined as the ratio of the quality of the video or web browsing stream to the quality of the equivalent stream on the downlink. The mapping scheme is calculated as follows:

\[
\text{Mapping Scheme} = \frac{\text{Quality of Video or Web Browsing Stream}}{\text{Quality of Equivalent Downlink Stream}}
\]
Table II ผลลัพธ์ระหว่างการทดสอบเมื่อใช้ 3 scheduler (VoIP traffic ใช้ semi-persistent scheduling) และไม่แสดงค่ากลับ (represented) ค่าเฉลี่ยที่ได้รับในวาระ 3 สาธารณะที่มี 0.7 % - 1.4 % ต่างกันนี้ยังเห็นกับการอธิบายตรงกับตารางบนไม่มีที่ใช้โดย DQOAS

![Image 15](throughput.png) ภาพที่ 15 Throughput and BLER for User when Proportional Fair scheduler is used

![Image 16](throughput.png) ภาพที่ 16 Throughput and BLER for User when Proportional Fair scheduler is used

![Image 50x185 to 282x299](diagram.png)

THE PERCENTAGE OF SATISFIED USERS (OUT OF 140 total users) WHEN THE SCHEDULER USED 1

<table>
<thead>
<tr>
<th></th>
<th>PF</th>
<th>RR</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>48%</td>
<td>46%</td>
<td>23%</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>61%</td>
<td>56%</td>
<td>41%</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>76%</td>
<td>68%</td>
<td>52%</td>
</tr>
</tbody>
</table>

ตารางที่ 6 The percentage of satisfied users when three schedulers are considered

DQOAS อัลลกอริทึมร่วมกัน scheme การจัดลำดับความสำคัญของข้อมูล และพิจารณาให้กับว่าจะกระทำที่จะตัดสินใจรับข้อมูลของ แบ以人民แบบมีมิติเดียวและ web browsing traffic streamed บนเครือข่าย LTE wireless โดยไม่ 처음ที่จะไว้ VoIP traffic

ผลการทดลองจะแสดงให้เห็นว่าผิดพลาดในการ DQOAS สามารถใช้ได้ตลอดใน 3GPP LTE networks ที่นี่แล้วจัดลำดับความสำคัญ scheme บวกการตัดสินใจเป็น DQOAS โดยการจัดลำดับความสำคัญของเครือข่าย LTE wireless ที่ตัดสินใจไม่เหมือนกันการตัดสินใจของ scheduler แต่ละแบบ
D. QoS-Aware Load Balancing in 3GPP Long Term Evolution Multi-Cell Networks

In this context, we consider the load balancing problem for QoS-aware and CBRTraffic. The objective is to balance the load across the cells in a multi-cell network, taking into account the different QoS requirements of the users. The problem can be formulated as an optimization problem, where the objective is to minimize the load difference between cells, subject to constraints on the QoS guarantees for different classes of traffic.

Throughput in the context of the network can be defined as the total amount of data that can be transmitted in a given time period. It is a key performance indicator for network operators, as it directly affects the user experience and the ability to support high-quality services. In the context of QoS-Aware Load Balancing, throughput optimization is crucial for ensuring that the network can support the required QoS guarantees for different classes of traffic.

Throughput optimization can be achieved through various techniques, such as load balancing, traffic engineering, and resource allocation. Load balancing involves the distribution of traffic across multiple cells or network elements to ensure that the load is evenly distributed and that no single cell or network element becomes overloaded. Traffic engineering involves the management of traffic flows to optimize network performance and ensure QoS guarantees. Resource allocation involves the allocation of network resources, such as bandwidth and processing power, to different classes of traffic to support the required QoS guarantees.

QoS-Guaranteed Hybrid Scheduling

In this context, we consider the problem of scheduling QoS-guaranteed traffic in a multi-cell network. The objective is to ensure that the QoS requirements for different classes of traffic are met, while also optimizing the network performance. The problem can be formulated as an optimization problem, where the objective is to maximize the network throughput, subject to constraints on the QoS guarantees for different classes of traffic.

Throughput optimization in the context of QoS-Guaranteed Hybrid Scheduling can be achieved through various techniques, such as adaptive scheduling, resource allocation, and traffic engineering. Adaptive scheduling involves dynamically adjusting the resource allocation and scheduling decisions based on the current network conditions and the QoS requirements of different classes of traffic. Resource allocation involves the allocation of network resources, such as bandwidth and processing power, to different classes of traffic to support the required QoS guarantees. Traffic engineering involves the management of traffic flows to optimize network performance and ensure QoS guarantees.
สถานการณ์ต่อไปนี้ 3GPP แนะนำ [10] เทคนิคป้องกันการเพิ่มสูงสุดของค่าที่สูงที่สุด

เมื่อผู้ใช้ BE ในแต่ละตอนที่หาย CBR ตามกระบวนการของทัวร์ชั่ว (Poisson) λ_f และ λ_t ที่ใช้จ่ายให้กับผู้ใช้ค่าเฉลี่ยประมาณ 100 วันที่ โดยความกดดันที่หน่วยของผู้ใช้ CBR ก็เป็นอัตราการ 250kbps

Simulator Result

N/A, LB CBR และ CBR + BE LB ใช้แสดงผลระหว่าง no load balancing และ load balancing ทั้ง 2 CBR และผู้ใช้ BE ตามดังนี้

เมื่อ ψ^{crb} มีขนาดเล็ก ผู้ใช้ CBR มีจำนวนมากจะทำให้ load balancing สูงมากขึ้น ดังนั้นเครือข่ายสามารถให้บริการผู้ใช้ CBR ที่มีอคคที่สูงที่สุด และเพิ่ม ψ^{crb} สําหรับผู้ใช้ BE ซึ่งระหว่าง CBR LB และ N/A จะมีค่า throughput ของ CBR ที่สูงสุดเป็น throughput ของผู้ใช้ 45% - 98.8% การสูญเสียของอัตราการสูงสุด นั้นelijke ψ^{crb} BE ค่าขั้นต่ำจะไม่ได้รับผลและเพิ่มค่าค่าความเร็วของ throughput ดังกล่าวที่ ψ^{crb} เป็นค่าขั้นต่ำของประสิทธิภาพที่มีค่าต่ำ แต่ได้ลดค่าขั้นต่ำของอัตราการ [4] โดยไม่ได้พิจารณาเกี่ยวกับ QoS

คำว่าความร่วมมือของประสิทธิภาพที่มีค่าต่ำของ handover

ประเภทประสิทธิภาพทำงานของอัตราการเพิ่มขึ้น handover

และอัตราการเพิ่มขึ้นของผู้ใช้ที่มีอัตราศัตรู ψ^{crb} ผู้ใช้ BE ที่สูง ของอัตราการลดลงเป็น 1.5

อัตราการรับรองของผู้ใช้ที่ใช้ได้กับการคัดกรองเพื่อการแสดงคัดกรองได้รับ
เป็นการเพิ่มขึ้นของอัตราการที่ใช้ในปัจจุบัน โดยอัตราการสูงสุดของผู้ใช้ CBR ที่มีอัตราการสูงสุดของ CBR LB และ N/A จะมีค่า throughput ที่สูงสุดเป็น throughput ของผู้ใช้ 45% - 98.8% การสูญเสียของอัตราการสูงสุด นั้นelijke ψ^{crb} BE ค่าขั้นต่ำจะไม่ได้รับผลและเพิ่มค่าค่าความเร็วของ throughput ดังกล่าวที่ ψ^{crb} เป็นค่าขั้นต่ำของประสิทธิภาพที่มีค่าต่ำ แต่ได้ลดค่าขั้นต่ำของอัตราการ [4] โดยไม่ได้พิจารณาเกี่ยวกับ QoS

ค่าความร่วมมือของประสิทธิภาพที่มีค่าต่ำของ handover

ประเภทประสิทธิภาพการทำงานของอัตราการเพิ่มขึ้น handover

และอัตราการเพิ่มขึ้นของผู้ใช้ที่มีอัตราศัตรู ψ^{crb} ผู้ใช้ BE ที่สูง ของอัตราการลดลงเป็น 1.5

E. Enhancing FEC Application in LTE Cellular Networks

อัธยาชย์สร้างความร่วมมือของไอโอกราฟ (3GPP) วิทยาการ ระยะไกล (LTE) ผู้นมัสการใช้การเรียกเรายัง Universal Terrestrial Radio Access (UTRA) พื้นฐานพัฒนาการ ยอดภาพและบริการ Multicast (e-MBMS) ใช้ออกอากาศถึงผู้ใช้ผ่านเครือข่ายความมั่นคง (MBSFN) การ ด้านการเพิ่มขึ้นการประสิทธิภาพการทำงานในการด้านเจาะป้องการ MBSFN ข้อมูลจะถูกส่งผ่านทางอากาศผ่านข้อมูลกระจายการอย่างแน่น หน่วยความถี่ ที่ Raptor ได้รับความร่วมมือและมีผลต่อไปให้เกิดขึ้น ไฟนิทฟอร์варด Forward Error Correction (FEC) วิธีการ สำหรับ e-MBMS
In the scenario of dense traffic with high UE population, the achievable throughput decreases significantly. The analysis of the system performance shows that the use of advanced coding techniques and optimized system parameters can mitigate the negative impacts of high UE density. The results indicate a potential increase in system capacity by implementing these strategies.

The impact of the system parameters on the performance is quantified through simulations, and the obtained results are validated through real-world scenarios. The following diagrams illustrate the cost vs. packet loss rate under different system configurations:

Figure 17: Cost vs. packet loss rate (UE population = 100, fixed FEC overhead = 5%)

Figure 18: Cost vs. packet loss rate (UE population = 100, fixed FEC overhead = 15%)

The findings highlight the importance of optimizing the system design to meet the demands of high-density traffic scenarios.
In the multicast implementation (Fig. 19) it was observed that the use of forward error correction (FEC) resulted in a considerable reduction in packet loss rate. In Fig. 19, the packet loss rate for the multicast setup is shown for different FEC overhead percentages. The results indicate that as the FEC overhead increases, the packet loss rate decreases. This demonstrates the effectiveness of FEC in improving multicast performance.

C. Cost vs. Multicast User Population

In the multicast setup, it was observed that the number of retransmissions decreased as the number of multicast users increased. This is because the multicast setup reduces the number of redundant transmissions needed to ensure that all users receive the data. The graph in Fig. 19 shows the relationship between the cost of the multicast setup and the number of multicast users.
B. Seamless Voice over LTE

Operator’s Vision

A. Improvement on the VoLTE (Voice Over LTE) Domain Handover with

![Graph showing Cost vs. multicast user population](image)

(packet loss rate=5%, fixed FEC overhead = 5%)

In the conclusion, Fig. 13 shows the reduction of the AIPN (All-IP based Network) layer in the VoLTE network. A good indicator of the improvement is the shorter call setup time. This is because the framework in AIPN is the service enabler network (SEN) and it is a part of the AIPN architecture.

![Diagram of SEN and AIPN](image)

C. Mobile VoIP User Experience in LTE

D. Test environment for QoS testing of VoIP over LTE

E. Mobile VoIP User Experience in LTE

CONCEPT OF AIPN AND SEN

In summary, AIPN is a service enabler network (SEN) that supports various services, including VoLTE, OTT, and VoIP over LTE. The AIPN architecture is designed to improve the user experience by reducing the call setup time and enhancing the quality of service. The framework includes the service enabler network (SEN) and the all-IP based network (AIPN), which are integrated to provide a seamless experience for users.
CONCEPT OF VOICE CALL CONTINUITY

The concept of VoLTE handover involves a seamless transition from a 3G or 4G connection to VoLTE service. The network architecture supports VoLTE by providing continuity in voice calls across different network nodes. In the event of an IMS-based handover, the network ensures that the voice call is maintained seamlessly.

NETWORK ARCHITECTURE SUPPORTS VOLTE

The network architecture supports VoLTE by integrating the IMS and EPC (Evolved Packet Core) networks. IMS handles the call control and session management, while the EPC deals with the user plane and QoS (Quality of Service). The transition from one technology to another is managed through a process called SRVCC (Single Radio Voice Call Continuity), ensuring that the voice call connection is maintained without interruptions.

The network architecture supports VoLTE by enabling seamless handovers between different network technologies. This is achieved through the integration of IMS and EPC, ensuring that the voice call is maintained uninterrupted during the transition. The diagram illustrates the process of VoLTE call setup and handover, highlighting the key components involved in maintaining the voice call continuity.

The diagram shows the interaction between IMS and EPC, showcasing the various elements involved in the call setup and handover process. The network architecture supports VoLTE by providing a seamless transition between different technologies, ensuring that the voice call is maintained throughout the process.
ชื่อเสียงทางภูมิศาสตร์ IMS ที่ฐานะและกลไกการจัดที่ผู้ใช้ตอนนี้ที่จะเข้ามามีผลกระทบทางจุดของ SRVCC ในส่วนต่อไป

SRVCC PROCEDURE (หรือ SRVCC)

รูปภาพที่ 25 แสดงภาพโดยรวมเครื่องขยายพื้นที่และการของขั้นตอนการ SRVCC แสดงให้เห็นการทำงานของ SRVCC / ขาดเครื่องขยาย

SRVCC ประกอบด้วยหัวข้อที่แสดงในรูปภาพที่ 2 คือ MSC (Mobile Switching Center) ซึ่งเป็นอุปกรณ์ที่สำหรับ CS เครื่องขยายและ RNC (NodeB) ซึ่งเป็นองค์ประกอบเครื่องขยายที่ส่งสัญญาณ 3G/ เก็บสัญญาณที่ส่งไปในผ่าน สำเนาไปยังอุปกรณ์ในขั้นตอนการ SRVCC / ประสบการณ์จากต้อง Vote ระหว่าง ผู้ใช้ และ ผู้ใช้

จะตัดสินใจโดยใช้ข้อเท็จจริงในการใช้ค่อนข้างมาก

ภาพที่ 26 Enhanced SRVCC (eSRVCC) procedure

ภาพที่ 27 แสดงภาพโดยรวมเครื่องขยายพื้นที่และการ eSRVCC

โดยมีเครื่องขยายพื้นที่ eSRVCC โดยมีเครื่องขยายพื้นที่ eNodeB handover ที่รับรองออกจาก MME และ MME ส่งจ่ายไปยังเครื่อง CS หรือเครื่องมือ MSC ในการ UTRAN และในพื้นที่ MSC สำหรับทาง CS ระหว่าง RNC (ขั้นตอนที่ 2)

เมื่อ MSC และ RNC ได้วิเคราะห์ข้อมูลเพื่อที่จะตัดสินใจในการเพื่อเปลี่ยนแปลง CS UTRAN, MSC จะส่งผลต่อข้อมูลแบบ SCC-AS เพื่อให้เปลี่ยนแปลง Vote CS โดยมีเครื่อง UTRAN (ขั้นตอนที่ 3) และ SCC-AS ส่งผลต่อไปยัง UE2 เพื่อการเปลี่ยนแปลงของขั้นตอนที่ 5 (ขั้นตอนที่ 4) ความรู้สึกการช่วยเหลือ MSC นั้นช่วยในการจัดที่ผู้ใช้ที่จะตัดสินใจ MC ของเครื่อง UTRAN MSC ไปยัง MME และ MME ส่ง Handover ออกไปยัง eNodeB (ขั้นตอนที่ 5) เมื่อประสิทธิภาพในการเข้าสู่เครื่อง UE1 วิวัฒนาการไป 3G LTE UTRAN แล้ววงทางสำหรับ SIP สำหรับยื่นข้อเสนอของข้อควรรับรอง ระหว่าง UE2 และ MSC และเลือกที่จะส่งข้อมูลผ่านเครื่องที่จะตัดสินใจในการทาง MSC ให้เพื่อเชื่อมต่อระหว่าง UE2 ซึ่งรับ VoLTE leg และข้อมูล UE1 leg โดย CS (ขั้นตอนที่ 6)

ตามที่เข้ามาไว้ด้าน SRVCC ขั้นตอนการบริการทาง ระหว่างผู้ใช้ EPC และ CS เครื่องขยายและอุปกรณ์ที่ใช้ IMS ในขั้นตอนนี้ ผู้ใช้จะตัดสินใจในที่จะเลือกเข้าสู่ที่ใช้พื้นที่ 3G และผู้ใช้จะส่งภาพ SIP สัญญาณที่ SCC-AS ที่ลงเรื่อยซึ่งที่สำหรับการ SRVCC แต่ละเครื่องที่นั้นก็ เก็บไว้ในระบบที่ 4 ทุกกลุ่มที่ได้ตัดสินใจที่เห็นว่า "Home NW" ที่ตัดสินใจได้ก็จะทำให้โปรแกรมซึ่งจะทำให้ข้อมูลในส่วนต่อไป

ENHANCED SRVCC procedure

ใน SRVCC, SCC-AS ซึ่งมีพื้นที่ในการส่งผ่านวิธีของ เข้าขั้นตอนเรื่องของการตัดสินใจ terminating (UE2) เพื่อส่งผลประโยชน์ของสื่อ เลือก ตามที่นั้นได้ที่มีประสิทธิภาพในการเปลี่ยนแปลงโดยอนาคตจะ ยังส่งผลที่ใช้ได้ (UE1) และออกอุปกรณ์ (UE2) อยู่ในเครื่องขยาย ที่รวดเร็วขึ้นในการส่งผ่านปริกาณ์ / เพื่อปรับปรุงที่มีการเพิ่ม ประสิทธิภาพของ SRVCC (eSRVCC) จะถูกดำเนินการ / นี่จะใช้ข้อมูลในทางที่ SRVCC จะทำให้ข้อมูลสำหรับ เข้าขั้นตอนโดยใช้ anchoring ส่งผ่านและ SIP สัญญาณจากเครื่องขยาย "visited network" โดยไม่เกิดข้อขัดกันทางการทำงานของด้านอุปกรณ์ terminating
Switch Fall Back

circuit switched

Single Radio Voice Call Continuity (SRVCC)

Voice over LTE via Generic Access (VoLGA)

Native CS Service and its necessity

Circuit/Fallback CS based SMS

CURRENT SOLUTIONS

- CS fallback
- SRVCC
- VoLGA
- Third party VoIP services like skype.

CS fallback

CS fallback solution ใช้โครงสร้างพื้นฐาน 2/3G มีอยู่แล้วการกระจายพื้นฐาน LTE making/receives a call 2/3G ให้เดิมในคีย์ที่ทำให้สามารถ CS makes/receives a call 2/3G ได้ในเวลาที่ดีให้กับผู้ใช้
Figure 27 CS fallback architecture

The 27 CS fallback architecture

According to the ITU-T Recommendations, SGs, GPRS, and MSCs are used together in 2/3G systems. In LTE, these systems are enhanced for 4G systems. In 2/3G systems, SGs, GPRS, and MSCs are used together. However, in LTE, these systems are enhanced for 4G systems. The network architecture and interworking between LTE and 2/3G systems are shown in Figure 27.

The Network Architecture

The network architecture consists of two main parts: the LTE network and the 2/3G network. The LTE network includes the eNodeB, the EPC, and the MME. The 2/3G network includes the SGSN, the GGSN, and the HLR. The interworking between the two networks is achieved through the SGSN and the MME.

The network architecture and interworking are based on the 3GPP standards. The LTE network is based on the LTE standard, which is a 4G technology. The 2/3G network is based on the 3GPP standards, which are 3G technologies.

The LTE network architecture includes the following components:

- The eNodeB, which is the access network node that connects the UE to the LTE network.
- The MME, which is the mobility management entity that is responsible for managing the mobility of the UE.
- The EPC, which is the core network that provides the necessary services to the UE.

The 2/3G network architecture includes the following components:

- The SGSN, which is the serving GPRS support node that provides the necessary services to the UE.
- The GGSN, which is the gateway GPRS support node that provides the necessary services to the UE.
- The HLR, which is the home location register that stores the user data.

The interworking between the LTE and 2/3G networks is achieved through the SGSN and the MME. The SGSN acts as a gateway between the LTE and 2/3G networks, and the MME acts as a mobility management entity.

The 3GPP standards also define the interworking between LTE and 2/3G networks. The interworking is achieved through the SGSN and the MME. The SGSN acts as a gateway between the LTE and 2/3G networks, and the MME acts as a mobility management entity.

The 3GPP standards also define the interworking between LTE and 2/3G networks. The interworking is achieved through the SGSN and the MME. The SGSN acts as a gateway between the LTE and 2/3G networks, and the MME acts as a mobility management entity.
วิธีการเกี่ยวกับที่เกี่ยวข้องกับการเคลื่อนที่ของผู้ใช้ เพื่อส่งสัญญาณ เราสามารถใช้การ SRVCC ที่มีต่อเครือข่ายและการป้องกัน CS ด้วยการเพิ่มประสิทธิภาพในการจัดตั้งคู่ช่วยที่เหมาะสมสำหรับปลายทางรุ่นและ SRVCC ร่วมกับ MME เพื่อใช้ส่งสัญญาณให้ใช้วิธีการอื่น ๆ และอัปกรณ์การส่งสัญญาณเชิงฟังก์ชัน MSC ที่เกี่ยวกับ SRVCC ส่ง MSC บรรทัดเชิงชิ้นที่ต่อไปยังยุคและระบบ MSCs ดังการเพิ่มประสิทธิภาพหรือเชิงฟังก์ชัน MSC ใหม่เพื่อสามารถใช้งาน

VoLGA

Using services like skype

นอกจากนี้ยังมีคู่มือเกี่ยวกับปัญหาต่างๆดังนี้ที่จะช่วยให้บริการ VoIP เช่น Skype ดำเนินการเพิ่มประสิทธิภาพไปพร้อมระบบที่ไม่มีขั้นตอน โดยผู้ใช้สามารถดูรายละเอียดเกี่ยวกับการสนับสนุน VoIP และใช้มากกว่าเมื่อมีการเชื่อมต่องาน LTE

1) Pros and Cons for CS fallback:

วิธี fallback CS มีประโยชน์ที่ผู้ใช้กระบวนการสามารถใช้ประโยชน์จากโครงสร้างพื้นฐานของ 2/3G มีข้อที่ต้องการความเสถียรของ แต่ LTE มีทักษะเพื่อให้ใช้วิธี fallback CS เป็นที่นิยมเพื่อด้วยการเรียกด่วน คำว่า CS ที่เป็นเฉพาะรุ่นของ 2/3G สำหรับการแล็ปส์ / รับสาย, ประสบการณ์การใช้สองสายจึงและไม่ให้เป็นเพียงสิ่งที่ควรทำเร็วขึ้น; ข้อดีจะต้องมีการที่จะคงที่สำหรับสายสม่ำเสมอ ที่มีปัญหาเกี่ยวกับการเกี่ยวกับ fallback CS คือความยากที่ผู้ใช้จะต้องส่ง ที่จะส่ง 2/3G และผู้ใช้คือผู้ใช้ใน QoS ของเราขั้นตอนที่มีอยู่ CS ก่อนมันถูกส่งจากเสียง การที่สามารถติดต่อกับ Rodger หรือ CS และสนับสนุนโดย PS, ไม่มีบริการขั้นตอนที่สามารถใช้งานในช่วงเวลา การเกี่ยวกับ fallback CS เป็นที่นิยม fallback CS ซึ่งไม่ได้เป็นอย่างเดียวที่ให้บริการจุดของมนุษย์เป็นปรับปรุง MSC ไม่ตรงไปตรงมาและวิธีการบาง

2) Pros and Cons for SRVCC

ความได้เปรียบของการ SRVCC เพื่อทำงาน fallback CS ที่ก่อตัวไว้ fallback CS ถึงก็จะมีที่ผู้ใช้ จะสูญเสียการควบคุมจาก LTE ซึ่งจะทำการอัปกรณ์การสูญเสียใน QoS สำหรับการปฏิบัติขั้นตอนอื่น ๆ เนื่องจากผู้ใช้จะไม่ได้ประสิทธิภาพและสามารถดูการ SRVCC ได้การสนับสนุนโดยให้บริการ การและคุณสมบัติวิธีการละเอียด IMS "หัวข้อ" ซึ่งมีเพียงอย่างเดียว การทดลองขั้นตอนที่จะใช้-services และ SMS บนพื้นฐานของมาตรฐานที่มีอยู่ Voice over ข้อมูลความละเอียด IMS [8] ผ่าน Voice over LTE วิธีโดย GSMA ให้การสนับสนุนการเกี่ยวกับการ SRVCC บ่อยครั้ง ๆ

ซึ่งข้อเสียของเรื่องการเกี่ยวกับ SRVCC ที่คือว่าจะมีข้อเสียกับ IMS ซึ่งในวิธีการเกี่ยวกับคู่มือในจุดและข้อขัดข้องและมันจะใช้กับบริการ ที่ผู้ใช้ไปได้ในจุดที่ไม่มีขั้นตอนปลอด IMS สามารถใช้ได้ หากมีการปรับใช้ LTE ที่เพิ่มเติมเกี่ยวกับการ SRVCC ดำเนินการอย่างจะมีการถือปฏิบัติ

3) Pros and Cons for VoLGA

ประโยชน์ที่ใหญ่ที่สุดของ VoLGA คือ ผู้ใช้มีการเข้าถึงเสียงโดยใช้ CS โดยไม่มีการรู้ว่าคู่ช่วยให้ใช้ LTE พร้อมกันเมื่อ fallback
CS ถึง CS ส่งเวลาไม่เกิน 2/3G made/received มี reutilizes โครงสร้างพื้นฐาน CS ที่มีโลหะโลหะส่วนกลางตัดสินตามไม่ได้ส่งผลกระบวนการต่อเนื่องเพียงแต่/cs โดยมีผู้ใช้ที่มี/MMM, SGSN, หรือ MSC, ทำการแก้ไขจาก VOLUME ไม่ได้เป็นเพียงสิ่งที่สำหรับโทรที่กลับไปยังสร้างอื่นๆ เช่น SMS

ปัญหาทั่วไปของ VOLUME ถึงกว่ามักไม่ใช่สิ่งที่ใช้และได้มาตรฐาน 3GPP ที่สำคัญที่สุดของผู้ให้บริการไม่ได้แสดงความสนใจมีบางส่วนต่อเนื่องสำหรับกับและจะต้องย้าย GAN มีอัตราส่วนที่ไม่ควรมีความสูงใน SRVCC สหรับความต้องการของไซซ์ข้อมูลการสื่อสารเป็นการที่มีประสิทธิภาพการสนับสนุนการร่วมกันเครือข่าย visited ต้องการที่จะปรับใช้ VANCs เพื่อเพิ่มพื้นที่สำหรับการสนับสนุน UES รวดเร็ว แทนที่ปฏิบัติการโทรที่ไม่มีค่า Vanc

4) Pros and Cons for third party VoIP solutions like skype

เป็นการทำทางออกที่ข่าวรับทั้งหมดไม่มีให้จัดสรร/น้อยขยายพื้นที่ทางผู้ประกอบการ และ-Zaal มีข้อดีอย่างชัดเจนประโยชน์สำหรับผู้ประกอบการที่ไม่ได้มีหรือไม่จำเป็นสำหรับ fallback CS หรือ VOLUME เข้าไปขั้นตอนและผู้ที่ไม่ได้ทำจะกลับใน IMS ทั่วไปจะมีการ魯activate มีความรวมกลับในเครื่องมือคอมพิวเตอร์

การแก้ปัญหาไม่ได้รับการรับรอง QSs ความต้องการในโทรศัพท์ไม่สามารถจัดไปเมื่อมีการรับรองของ LTE ซึ่งจะทำให้ไม่สามารถที่จะมีการigate บน LTE มีข้อดีเหล่านี้

ผู้ให้บริการที่ใช้แตกต่างกันเมื่อมีแผนการใช้งานที่แตกต่างกัน อาจของ LTE ผู้ให้บริการสามารถเลือกไลน์โครงสร้างพื้นฐาน 2/3G และวางแผนที่จะปรับใช้ LTE ในพื้นที่ที่มีต่อเนื่องกับการใช้งาน 2/3G ผู้ให้บริการจะสามารถจัดให้มุ่งหมายเป็น IMS ทั่วไปเลือกข้อมูลสำหรับการให้บริการปลดล็อกที่ดีอินเตอร์เน็ตภาพรวมที่มีข้อมูลรอบข้าง 2/3G บนเน็ตซึ่งผู้ประกอบการจะดูได้ในข้อมูลเพื่อใช้เป็นเครื่องมือเครื่องใช้กลับ LTE IMS ในการใช้งาน ผู้ให้บริการจะต้องสามารถตัดสินใจว่าจะทำให้ 어떤แผนที่จะมุ่งหมายไปที่ LTELTE โดยไม่ได้แผนที่ตัดสินใจ หรือ 2/3G หรือสนับสนุน IMS บาง ผู้ให้บริการยิ่งมีการใช้งานที่มีอยู่

![Image](https://via.placeholder.com/150)

Algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Paper</th>
<th>AMR</th>
<th>AMR</th>
<th>MAC</th>
<th>Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adaptive Multi Lane Technique For LTE Radio Access VoIP</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Optimized Adaptive Multi Lane Technique For LTE radio access VoIP</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>QoS Based call admission control and resource allocation mechanisms for LTE femtocell deployment</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Voice-over-IP Performance in UMTS Long Term Evolution Coexistence</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mobile VoIP User Experience in LTE</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

ภาพที่ 30 The AML System

ในทางจริงการใช้ทำจากภาพวาดกล้องการจำลองผู้ใช้ที่ไม่ต้องใช้ OMNET++ version 4.1 โดยใช้ INET framework and VoIP tool 2.0 [8] ในการจำลอง VoIP เครื่องมือ 2.0 ได้รับการแก้ไขในการ
Adaptive Multi Lane Technique For LTE Radio Access VoIP

Simulating traffic generated by the HostA HostB configuration using LTE Network, the parameters are 3GPP LTE. In the simulation, the packet size is kept to 5ms. The LTE-Network protocol can handle the packets of HostA and HostB efficiently.

The topology of the simulation is shown in the figure. The AML technique is simulated using OMNET++ and is observed in terms of MOS. The results show that the AML technique improves the quality of VoIP services.
A QoS based call admission control and resource allocation mechanism for LTE femtocell deployment อัลกอริทึมการจัดสรรทรัพยากรที่สูงสุดในการจัดสรรทรัพยากรที่สูงสุดให้กับการติดต่อระหว่างโมดูลการจัดสรรทรัพยากรที่สูงสุด

In femtocell, the QoS of a call can be improved by optimizing the transmission bandwidth of the call. This can be achieved by using a Voice over Internet Protocol (VoIP) connection, which provides a higher quality of service compared to traditional circuit-switched voice calls.

A QoS based call admission control and resource allocation mechanism for LTE femtocell deployment จึงเป็นตัวเลือกที่ดีในการจัดสรรทรัพยากรที่สูงสุดให้กับการติดต่อระหว่างโมดูลการจัดสรรทรัพยากรที่สูงสุดในส่วนที่ 1.

![Image of Skype SILK performance](image)

![Graph of VoIP performance over S1-U](image)
ได้โดยการให้ VLANs ออกจากแต่ละ MNO ที่ใช้เครื่องของ ISP ดังนั้นจะย้ายผ่านให้ DSLAM ใช้ที่ VLAN ของแต่ละเครื่องเพื่อระบุ MNO ที่เป็นสมาชิก

แต่ละ MNO จะมีการตรวจสอบระดับการให้บริการ SLAs ในที่เดียวกับ ISP ที่ให้เป็นแมลงด้วยสุทธิแต่ละ DSLAM โดยเฉพาะกรอบเวลาของ VoIP นั้น MNO สามารถตรวจสอบหรือให้เกิดขึ้นเฉพาะแต่ละ DSLAM ที่จะได้รับมาจากการพัฒนาขึ้นแบบครบวงจรสุทธิที่จะให้แต่ละ DSLAM จะรักษาคุณภาพการโทรด้วยเครื่องสั่งให้ใช้ QoS ตามความที่ CAC ความคุ้ม EMBAC สำหรับ VoIP

อีกอีกการผ่านแบบ VoIP เป็นการเข้าเล่มผ่าน probes เพื่อตรวจสอบการตรวจสอบของ VoIP กลุ่มการทำงานแบบ handover และมีต่อการความของ ซึ่งได้รับผ่าน probes เพื่อประเมินคุณภาพการโทรในเครื่องขยาย

แนวคิดที่แตกต่างจากคือ
1. วัตถุประสงค์ของการส่ง ถึงการค้นหาอย่างรวดเร็วที่สุด client-แบบเล่นที่เพื่อให้การสื่อสารได้ทันท่วงหิน
2. เรียนรู้จากการวิเคราะห์การวิเคราะห์สด VoIP เตรียมอย่างสม่ำเสมอ สำหรับข้อมูลขั้นตอนที่ค้นหาเช่นการเรียนรู้ในการให้ใช้ WiFi หรือ CAC จน ความต้องการสำหรับการรับข้อมูลแบบไม่มีคีย์เซ่นเซอร์ สถานะผ่านข้อมูล ข้อมูลการแสดงทางข้อมูลที่มีอยู่

เพื่อตัวงานจะต้องดำเนินการนั้น MOS ของ VoIP จะใช้ตัวแปรที่ระบุขึ้นจากข้อมูลที่ E เลือกตามสัญญาณของรูป ได้รับการคัดเลือกจากสนับสนุน AMR voice การตั้งค่าข้อมูล MOS-Model ส้นสาย แต่ละสาย VoIP ซึ่งสัญญาณผ่านความถี่ระดับขั้นตอนที่สามารถสื่อสารกับหรือ รวมข้อมูลหรือขั้นตอนที่ต้องการเป็นข้อมูลที่จะอยู่ในสินของข้อมูลการสื่อสารให้คล่องแคล่ว

ในanguard อาจใช้ข้อมูล ในการวิเคราะห์ความที่ต้องการ ระหว่าง femtocell หรือ HeNBGW แสดงให้เห็นข้อคิดเห็นในเรื่องของ เราจะต้องแสดงถึงความถูกต้องของ NTP หรือ PTP เนื่องจากจะนำให้ไปโดยตรงคล่อง

HeNBGW ถึงจะมีความน่าจะเป็นข้อมูลข้อมูลความเกี่ยวกับ NTP femtocell เพื่อให้เกิดความแม่นยำสูงในเรื่องประสานงาน

ภาพรวมการสื่อสาร

สถิติที่เหมาะสมเครื่องซ่อมเครื่องด้วยการให้บริการ SLAs การให้บริการที่มีRemaining femtocell อุตสาหกรรมการควบคุมและพัฒนา แบบจัดตั้งขึ้น ประมวลด้วย ผู้ใช้ตามสมการบนฑ์ ซึ่งพัฒนาความคล่องแคล่วที่เป็น HeNBGW โดย MNO ต้องกิจกรรมจะต้องส่งสัญญาณ DSLAM เครื่องขยายหลัก เดียวกันของ MNO โดยแต่ละ HeNB จะส่งข้อมูลกับเราหรือแบบ Mode DSL

ข้อมูลที่รวบรวมทางการสร้างมุมมอง HeNBGW แสดงให้เห็นถึง DSLAM ทำให้สามารถต้องให้บริการประมาณ 1000 DSL ที่จะส่งผ่าน บริการที่มี MNO ทำให้สามารถมีการต่อเชื่อมต่อคู่มือที่มีกิจกรรม 4 ผู้ใช้โดยเชื่อมต่อที่มี MNO อย่างมีประสิทธิภาพได้ถึง 4000 แล้วจะส่งผ่าน MNO เบื้องต้นที่มีเครื่องขยายหลักส่งพถกของโครงสร้างเครือข่ายที่จะมีความถูกต้องการเชื่อมต่อที่มีคุณภาพหลักส่งจะไม่มีผลกระทบที่คุณภาพในการโทร

ดังกล่าวที่ 1 อินเตอร์เน็ตของผู้พัฒนาโดยผู้ให้บริการ อินเตอร์เน็ตที่มีเพื่อให้ MNO สามารถจัดการการจัดสรรทรัพยากรแบบไม่มี

ดังกล่าวที่ 2 ใช้การตัดเอกสารสัญญาณด้านโดยอัตโนมัทิต่อของระบบหรือ แบบนี้สำคัญเกี่ยวกับการพัฒนาเครือข่ายเพื่อการข้ามเครือข่ายด้วยการ BPCF และ CAC ปรับปรุงการจัดสรรทรัพยากรใน DSLAM

วิธีการตรวจสอบคุณภาพโทร

การตรวจสอบคุณภาพที่มีสนับสนุนไปในความสื่อสารการจัดสรรทรัพยากรแบบไม่มี MNO จะมีการสื่อสารที่มีคุณภาพของข้อมูลข้อมูลในการ HeNBGW เพื่อควบคุมคุณภาพการโทรด้วยเครื่องเล่นไปเรียบร้อยการสื่อสารที่พัฒนาอยู่ใน HeNBGW

บทบาทในส่วนการตรวจสอบคุณภาพการโทรที่ควรจะมีการลงมือ กลุ่มสื่อสารของการ MOS และวัดคุณภาพแบบ real time เนื่องจากสถิติจะตรวจสอบความคุณภาพการโทรและจัดสรรทรัพยากรแบบไม่มี เพื่อเกิดความแม่นยำคุณภาพ

ผลเฉพาะจะใช้ถ้า CIR จาก SLA ในการคำนวณค่าที่มีมาในส่วนการโทร จำนวนข้อมูลเท่านั้น และจำนวนมุมด้านของแสงที่สามารถสร้างการจัดสรร แบบเครื่องข้อมูลนี้จาก ISP ไป MNO โดยจะเป็นเสียงคัดค้านบาง ระหว่าง CIRbps และอีกของมีการวัดค่าใช้จ่าย โดยมีการเข้าใช้ รหัส ARM ด้วยความสุทธิ
หลักการคำนวณต่อ MOS

เมื่อเพิกถอนที่ใหม่ถึงของภาพจะแสดงการคำนวณสูญเสีย
ความล่าช้าของแพคลีสก์ ความล่าช้าของแพคลีสก์จะถูกคำนวณเป็นความ
เฉลี่ยระหว่างหัวช่วงขึ้นและลงของแพคลีสก์ โดยการคำนวณจะใช้
RTP jitter algorithm ตัวราย RTP จะใช้ในการคำนวณค่าล่าช้าการ
สูญเสียที่เกิดในเนื้อตัวสื่อที่ถูกนับ Windows size ต่ำกว่า 100
แพคเก็ตที่ ใช้จัดการส่งข้อมูล R และค่าล่างที่เท่ากับ MOS ด้านบนคือสูตร
E-Model

c ทำ MOS เท่ากับค่าที่คำนวณออกมาถ้าได้ค่าคุณภาพ โดยการ
ปรับขนาดเป็นบิตติละประมาณ 30 ต่่อวินาทีดังนี้ ดังนั้นค่าด้านล่าง MOS
ที่เน้นที่ได้รับจากตรวจสอบ และค่าล่าช้าไปยังต่ำสุดของ MOS ทุกสัญญาณ
HnBGW เราจะใช้ค่าที่ MOS เท่าระยะห่างที่ยังไม่ส่งไป ใช้ค่าด้านล่าง
MOS เป็นต้นฐานของการคำนวณการควบคุมระบบวิทยุและรังวัด
ทรยศกันใน DSLAM.

วิธีการคำนวณการรักษาสภาพที่ได้รับจริงใน HnB GW
โดยไม่ต้องมีการตรวจสอบhhสัญญาณวิทยุ และจะมี EF ต่อ MNO ถ้ามี
ค่าสูงกว่าดังที่ตั้งไว้ เมื่อมีการตรวจสอบในเครือข่าย HAN เช่น
การตรวจสอบข้อมูลไม่สามารถตรวจสอบได้วิธีการจัดสรรทรัพยากรนั้น
เก็บความเพื่อจะต้องสนับสนุนเพิ่มเติมอยู่ในสัญญาณ
Allocation Mechanism

แบบผ่านการตรวจสอบกระบวนการคัดเลือกคุณภาพของสัญญาณ
ทั้งหมดจากการตรวจสอบ HnB GW ในกรณีที่จะคาดการณ์ค่าของ
เหล่านี้และค่าค่อนข้างของ MOS จะแสดงความเข้าใจของ EF ที่ต่อรองชอง
DSLAM ถ้ามีความเป็นไปได้ว่าจะทำงานใช้การโทรที่มีประสิทธิภาพที่
ดีมาก เหมือนกับปัญหาในเครือข่าย HAN ที่มีการคัดลอกแบบ femtocell
กระบวนการตรวจสอบข้อมูลเหล่านี้ จะแสดง MOS สำหรับผู้ที่มีสัญญาณ
การโทรในเครือข่าย HAN

กระบวนการจัดสรรทรัพยากรทุกค่าตามที่ CAC เป็น
ระบุ เมื่อมีการเรียกซึ่งทุกสัญญาณ ruining ที่ต่ำของ MOS ในแต่ละครั้ง
ของการโทรอยู่ในความที่จะต้อง 95% เป็นอย่างน้อยแล้วผู้ที่มีสัญญาณในการ
โทรจากเครือข่าย HAN จะส่งผ่าน MOS ที่สูงที่สุด มีความเป็นไปแบบเครือข่าย HAN
คัดลอกข้อมูลการคำนวณของ MOS ทั้งหมดจะไม่มีสัญญาณในการโทรใน
เครือข่าย HAN.

ถ้าค่าค่อนข้าง MOS ไม่มีค่าต่ำกว่า 3.8 เล็กและไม่มีการรักษาไม่
ได้ใช้สูตรการจัดสรรทรัพยากรใน DSLAM สามารถเข้าใจและคิดเพียง
เพียงอย่างเดียวได้ถ้าเป็นผู้ตัดสินใจในการจัดการใน EF มีการตั้ง NetVoIP จะ
ข้อใช้เครือข่ายมากขึ้น

ถ้าค่าค่อนข้าง MOS 4.0 จำนวนของการโทรในปัจจุบันลดลงและ
แนวต่อข้อต่อข้อไว้ EF ลดลงไม่ร่วมกันด้วย CIR ถ้าค่า MOS เล็กสูงกว่า
3.9 เล็กไม่มีการโทรใหม่และยุติการโทร

ค่าค่อนข้าง MOS จากการออกแบบภายใต้ปัญหาของสัญญาณในการ
โทรในเครือข่ายที่ต่ำที่สุด

<table>
<thead>
<tr>
<th>Quality rating</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>4.3 - 4.50</td>
</tr>
<tr>
<td>Medium</td>
<td>4.03 - 4.34</td>
</tr>
<tr>
<td>Low</td>
<td>3.60 - 4.03</td>
</tr>
<tr>
<td>Poor</td>
<td>1.00 - 3.10</td>
</tr>
</tbody>
</table>

ภาพที่ 35 Call Admission Control and Dynamic Resource

ตรวจสอบบริการ EF การจัดส่งสัญญาณ DSLAM โดยแต่ละ
MNO จะมีการตรวจสอบแนวคิดที่ใช้ให้ EF จะทำการระบุที่จะส่งมัน
โอกรอบการเพิ่มเติม AMR ถ้า 20 ms เบี่ยงตัวที่มีการใช้งานจะถูกเก็บไว้ใน
buffer ผล buffer มีขนาดที่จำกัดและผลการรักษาการโทร

Mobile VoIP User Experience in LTE รูปแบบนี้มีที่ใช้ใน
เพื่อให้ชัดเจนกว่าการทดลอง ด้วยการสร้างสุ่มที่สูง (100 Mbit/s
ในการ download และ 50 Mbit/s สำหรับ Upload) และมี delays ที่ต้อง
call ตัวแปรปรับแต่งการให้ใช้บนอุปกรณ์ที่ส่งสัญญาณต่างๆ ในการต่างๆ
ของโลก อย่างไรก็ตาม LTE มีบริการเพื่อส่งสัญญาณ Packet switched.
การเชื่อมต่อระบบแบบนี้จะถูกต้องไปในโปร่งนี้ของการติดต่อลดเวลา
ที่ต้องการส่งสัญญาณ user perceived quality ของบริการMobile
Voice over IP (VoIP) application ใน LTE ผลเพื่อ ปรากฏผลสำคัญในการ
ใช้แบบการส่งสัญญาณคลื่นเนื้อหาอินเนอร์ OPNET Gavrilovic ได้สร้าง
แสดงผลตาม solutions สำหรับ Voice และบริการ SMS ในเครือข่าย LTE,
IMS Telephony (MMTel), IMS Telephony with handover to CS domain (SRVCC) and CS fallback is a technique to decouple the LTE rollout from MS/MMTel rollout.

Gavrilovic et al. propose an alternative method to decouple the LTE rollout from MS/MMTel rollout.

Paisal et al. discuss the benefits of VoIP in LTE compared to 3G and 4G networks. They compare the MOS values of voice calls in LTE and 3G networks.

Henttonen et al. discuss the performance of VoIP and SRVCC in LTE networks. They compare the MOS values of voice calls in LTE and 3G networks.

Paisal et al. propose a method to improve the MOS values of voice calls in LTE networks.

Puttonen et al. discuss the performance of VoIP in H.248/3GPP networks.

Table 12: SIMULATION SETTINGS

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>System bandwidth</td>
<td>1.4, 20 MHz</td>
</tr>
<tr>
<td>VoIP codec</td>
<td>G.711, G.723.1, 5.3K, G.729 A, GSM FR</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>FDD</td>
</tr>
<tr>
<td>Base frequency (DL)</td>
<td>1920 MHz</td>
</tr>
<tr>
<td>Cyclic prefix type</td>
<td>7 symbols per slot</td>
</tr>
</tbody>
</table>

Figure 36: Relationship between MOS values and R values for LTE and 3G networks.
The equation for MOS is given by:

\[R = R_0 - L_e - L_a - L_{e-off} \]

where:

- \(R_0 \) is the reference value
- \(L_e \) is the packet loss rate
- \(L_a \) is the audit time
- \(L_{e-off} \) is the offset time

The formula for MOS can be expressed as:

\[MOS = \begin{cases}
1, & \text{for } R < 0 \\
1 + 0.035 \cdot R + R \cdot (R > 100) \\
(100 - R) / 7 \cdot 10^{-4}, & \text{for } R \in [0, 100] \\
4.5, & \text{for } R > 100.
\end{cases} \]

For high bitrate applications, MOS values are interpreted as follows:

- 5: Excellent
- 4: Good
- 3: Fair
- 2: Poor
- 1: Unacceptable

Table 14: Simulation Results (MOS Values)

<table>
<thead>
<tr>
<th>VoIP Codec</th>
<th>System Bandwidth</th>
<th>1.4 MHz</th>
<th>20 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM FR</td>
<td>2.51</td>
<td>3.49</td>
<td></td>
</tr>
<tr>
<td>G.729 A</td>
<td>3.02</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>G.723.1 5.3K</td>
<td>2.51</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>G.711</td>
<td>3.64</td>
<td>3.64</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Recommendation of MOS

<table>
<thead>
<tr>
<th>Paper</th>
<th>MOS</th>
<th>R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>450 MHz</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
<td>1.4-20 MHz</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>15 MHz</td>
</tr>
</tbody>
</table>

Conclusion:

The simulation results show that for VoIP on LTE, the MOS values are generally good, with MOS values ranging from 3.64 to 3.02 for 1.4 MHz and 3.64 to 3.49 for 20 MHz system bandwidth. The recommendation for MOS is suitable for most applications, with a range of 1.6 to 450 MHz. The algorithm for MOS calculation is effective for various applications, including VBR and ABR. The results confirm the accuracy and reliability of the MOS calculation method.
1.2 Packet Loss คือการสัญญาณของข้อมูลที่เกิดขึ้นเนื่องจากข้อมูลที่ส่งถึงอุปกรณ์ส่งที่ต่างกันไม่สามารถไปถึงปลายทางได้

1.3 Jitter คือความแตกประเดิลของระหว่างทาง Delay ที่เกิดขึ้นกับแต่ละ Packet ในการสื่อสารจากต้นทางไปปลายทาง

1.4 Throughput คือการวัด Bandwidth ที่เกิดขึ้นจริงในช่วงเวลาที่โดยการใช้สื่อทางอินเตอร์เน็ตที่ส่งไปในอุปกรณ์ ล่าสุด ข้อมูลที่เตรียมไว้วางน้ำ อย่างไรก็ตามหาคุณภาพอย่าง Throughput มักจะมีค่าต่ำกว่าคุณภาพของ Bandwidth มาก

2. คุณภาพการให้บริการ (Service Quality) คือด้านพื้นฐานของการรักษาความสอดคล้องในการให้บริการนี้ที่เกิดจาก การให้บริการจะมีมุมมองที่สำคัญตามที่เรียกว่าความต้องการให้บริการด้วย ทุกสิ่งทุกอย่างสิ่งที่สำคัญที่สำคัญควรมีความต้องการให้บริการ ให้บริการตลอดระยะเวลาความต้องการของผู้ใช้บริการตามความ

เอกสารอ้างอิง

ตารางที่ 17 แสดงการสรุปรายละเอียดด้านประสิทธิภาพ

<table>
<thead>
<tr>
<th>BLER</th>
<th>Throughput</th>
<th>Delay</th>
<th>Lost</th>
<th>Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

องค์ประกอบของคุณภาพสำหรับการให้บริการ นั้นแบ่งออกได้เป็น 2 ส่วน ได้แก่

1. คุณภาพสื่อสารคือการระดับคุณภาพที่เกิดขึ้นระหว่างการสื่อสารต้นทางและปลายทาง หรืออีกที่หนึ่งคือคุณภาพของระบบโครงข่ายสื่อสารที่รับผิดชอบในการสื่อสารคือ อัตราความล่าช้าของข้อมูลหลัก ๆ ได้แก่

1.1 Delay คือระยะเวลาที่ใช้ในการสื่อสารข้อมูลไปยังระบบโครงข่ายสื่อสารที่ต้นทางไปยังปลายทาง

1.2 Packet Loss คือการสัญญาณของข้อมูลซึ่งเกิดขึ้นเนื่องจากข้อมูลส่งผ่านอุปกรณ์ต้นทางไม่สามารถไปยังปลายทางได้